
Running head: RAML to HTML, through Java Parser 1

RAML to HTML, through Java Parser

Rahul S. Agasthya

Department of Computer Science

SUNY Stony Brook University

Stony Brook, NY-11794

Author Note

This project is for the documentation of Infinera Products, for an efficient translation of

data from one language to another.

Infinera India Pvt. Ltd.

Prestige Solitaire, 401, Level 4

6, Brunton Road

Bangalore KA - 560025

RAML TO HTML, THROUGH JAVA PARSER 2

Abstract

The Documentation work at Infinera India Pvt. Ltd. included manual translation of data in

RAML files to PDF files. To ease this process, the RAML to HTML Parser was developed that

produces a HTML page of the Schemas in the RAML file. With minimal modification, the final

piece can be pasted in the end-user document.

Keywords: RAML, HTML, Schema, Parser.

RAML TO HTML, THROUGH JAVA PARSER 3

Contents
Abstract ... 2

RAML to HTML, through Java Parser ... 5

Project Overview .. 7

Project Content.. 7

Project Class Diagrams: .. 7

Main Classes. .. 8

JAR Files. .. 10

Using the RAML-HTML Parser ..11

Check whether all input files are in the right place: ..11

Using the Parser .. 12

Output ... 14

Customizing your RAML-HTML Parser .. 15

Customizing the Schema: ... 15

Customizing the Schema Property Class: ... 16

Customizing the Driver Classes: ... 16

References ... 17

Appendix 1 .. 18

String Functions in Java: (Fodor, 2014) .. 18

ArrayList Objects: ... 19

RAML TO HTML, THROUGH JAVA PARSER 4

Appendix 2 .. 20

HTML Scripting tools (w3 Schools, n.d.) ... 20

Introduction: .. 20

HTML Tags: .. 20

Styling HTML with CSS ... 20

Tables in HTML: ... 21

RAML TO HTML, THROUGH JAVA PARSER 5

RAML to HTML, through Java Parser

This RAML to HTML Java Parser is an effective tool to document the schemas of a

particular RAML file.

What is RAML?

RESTful API Modeling Language (RAML) is a YAML-based language for describing

RESTful APIs. It provides all the information necessary to describe RESTful or

practically-RESTful APIs. Although designed with RESTful APIs in mind, RAML is

capable of describing APIs that do not obey all constraints of REST (hence the

description "practically-RESTful"). It encourages reuse, enables discovery and pattern-

sharing, and aims for merit-based emergence of best practices. (Galiegue, 2014)

What is HTML?

Hyper Text Markup Language, commonly referred to as HTML, is the standard markup

language used to create web pages. (Merriam-Webster, 1989)

Web browsers can read HTML files and render them into visible or audible web pages.

Browsers do not display the HTML tags and scripts, but use them to interpret the content

of the page. HTML describes the structure of a website semantically along with cues for

presentation, making it a markup language, rather than a programming language.

HTML elements form the building blocks of all websites. HTML allows images and

objects to be embedded and can be used to create interactive forms. It provides a means

to create structured documents by denoting structural semantics for text such as headings,

paragraphs, lists, links, quotes and other items. It can embed scripts written in languages

such as JavaScript which affect the behavior of HTML web pages.

RAML TO HTML, THROUGH JAVA PARSER 6

Web browsers can also refer to Cascading Style Sheets (CSS) to define the look and

layout of text and other material. The World Wide Web Consortium (W3C), maintainer of

both the HTML and the CSS standards, has encouraged the use of CSS over explicit

presentational HTML since 1997. (World Wide Web Consortium, 1997)

What Editor is required to run this parser?

Idea IntelliJ Community Edition is the recommended editor for this job.

Installation link: https://www.jetbrains.com/idea/download/

This also requires the Java Development Kit, Version 7 or higher.

Installation link:

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-

downloads-1880260.html

IntelliJ IDEA is a Java integrated development environment (IDE) for developing

computer software. It is developed by JetBrains (formerly known as IntelliJ), and is

available as an Apache 2 Licensed community edition, and in a proprietary commercial

edition. IntelliJ IDEA is not based on Eclipse like MyEclipse or Oracle Enterprise Pack

for Eclipse. (Kudtyashov, 2015)

System Requirements for Idea IntelliJ (JetBrains, 2015):

 Windows 8/7/Vista/2003/XP or MacOS X: 10.5 – 10.9 or Linux: GNOME or

KDE desktop.

 1 GB RAM minimum, recommended 2 GB.

 300 MB hard disk space + minimum 1 GB cache memory.

 1024×768 minimum screen resolution.

 JDK 1.6 or higher. 7 or higher for JavaFX

RAML TO HTML, THROUGH JAVA PARSER 7

Project Overview

Project Content

The main contents of the project include:

1. Java Classes:

a. SchemaProperty

b. Schema

c. RAML_HTML_Driver_1

d. RAML_HTML_Driver_2

2. JAR Files:

a. raml-java-parser-master

3. User Input File:

a. One RAML file in the folder src. (Name is user discretion)

4. Output file:

a. One HTML file in project main folder. (Name variable)

Project Class Diagrams:

RAML TO HTML, THROUGH JAVA PARSER 8

Main Classes. The three main classes that are part of this project:

RAML_HTML_Driver_2. The RAML_HTML_Driver_2 class, implements ArrayLists

of Schema objects, which is used to generate a HTML file of the Schemas. This contains the

run() method.

The run() method is the core method for the generation of the HTML file. It uses the

raml-java-parser that is used to read RAML files. Parameter passed is @param filename.

Exception thrown @throws IOException.

Using the raml-java-parser, a RAML file readable by Java is built. An object array called

schemas extract all the schemas to an array. The variable title extracts the heading of the RAML

file. Using the FileWriter object and the BufferedWriter, a new HTML file is created with

the headers and titles specified. The title of HTML file will be the heading of the RAML file.

Every Schema in the array is stored as a String s. This will be split on basis of new line (\n)

to an ArrayList array. The variable numberOfProperties is used to find the total number

of properties present in the Schema. An iterator will check for "}," and increment the value of

numberOfProperties if found. Using String.split(), String.substring(),

String.trim() and String.replaceAll(), the name, description, type, required condition

and the supporting values are extracted. Similarly, the name and description of the schema are

extracted. All schemas were added to the ArrayList. Simultaneously, the writer calls the write

function and sends it to separate HTML files, whose name is the name of the Schema.

RAML_HTML_Driver_1. The RAML_HTML_Driver_1 class, implements ArrayLists of

Schema objects, which is used to generate a HTML file of the Schemas. This class contains two

methods: run() and main().

RAML TO HTML, THROUGH JAVA PARSER 9

The run() method is the core method for the generation of the HTML file. It uses the

raml-java-parser that is used to read RAML files. Parameter passed is @param filename.

Exception thrown @throws IOException.

Using the raml-java-parser, a RAML file readable by Java is built. An object array called

schemas extract all the schemas to an array. The variable title extracts the heading of the RAML

file. Using the FileWriter object and the BufferedWriter, a new HTML file is created with

the headers and titles specified. The title of HTML file will be the heading of the RAML file.

Every Schema in the array is stored as a String s. This will be split on basis of new line (\n)

to an ArrayList array. The variable numberOfProperties is used to find the total number

of properties present in the Schema. An iterator will check for "}," and increment the value of

numberOfProperties if found. Using String.split(), String.substring(),

String.trim() and String.replaceAll(), the name, description, type, required condition

and the supporting values are extracted. Similarly, the name and description of the schema are

extracted. All schemas were added to the ArrayList. Simultaneously, the writer calls the write

function and sends it to the HTML file. This method also creates an HTML File which is a

contents page for the list of Schemas, whose HTML files is generated in

RAML_HTML_Driver_1.

The main() method is the main function of the project. The name of the RAML file is

accepted from the user and checks whether the file exist or not. It then creates an object of

RAML_HTML_Driver_1 and RAML_HTML_Driver_2, called driver1 and driver2. The

driver object then calls the run() function of the objects and passes the file name.

RAML TO HTML, THROUGH JAVA PARSER 10

SchemaProperty. The SchemaProperty class is used to create an object for Schema

class.

INVARIANTS:

name stores name of the property.

type stores the type of variable, like int, float, String, array, enum, etc.

description stores the description of the Schema Property.

required stores a boolean value as String, if required true, else false.

support stores the Supporting Variables mainly required for Arrays and Enums.

Schema: The Schema class, implements ArrayLists of SchemaProperty, which is used

to create an object for RAML_HTML_Driver class.

INVARIANTS:

schemaName stores the name of the schema.

description stores the Schema Description.

properties is an ArrayList of type SchemaProperty and is used to store the list of

properties that follow.

JAR Files. To convert the RAML files to Java readable, a JAR File was used.

raml-java-parser-master. The JAR contains a RAML java parser compatible with

version 0.8 of the RAMLspecification. The parser depends on SnakeYaml, a Java YAML parser.

RAML TO HTML, THROUGH JAVA PARSER 11

Using the RAML-HTML Parser

Check whether all input files are in the right place:

The main directory will look something like this:

The input files should go in RAML_HTML_Parser folder.

\

RAML TO HTML, THROUGH JAVA PARSER 12

Using the Parser

Open RAML_HTML_Driver_1 and press Shift + F10.

A similar screen will appear:

On the console, enter the same input file name exactly, with the extension of .raml.

Over here, it would be otsv_v2.raml or otsv_v3.raml.

The refreshed directory will look like:

RAML TO HTML, THROUGH JAVA PARSER 13

Open the .HTML file and move the mouse to the upper right corner, a dialog box will pop

up and choose your preferred browser.

RAML TO HTML, THROUGH JAVA PARSER 14

Output

The output returns a list of schemas.

RAML TO HTML, THROUGH JAVA PARSER 15

Customizing your RAML-HTML Parser

Customizing the Schema:

Editing the Schema Class.

The editor must add another variable in the Schema Class.

It should be prior to private ArrayList<SchemaProperty> properties.

Modify the Getter and Steer Methods, and the toString() method.

Ideally, for any data type other than Boolean, the getter must be:

 public <datatype> get<VariableName>() {

 return variableName;

}

For a Boolean variable, the getter will be:

 public boolean is<VariableName>() {

 return variableName;

 }

And the setter will follow as:

 public void set<VariableName>(<datatype> <variableName>) {

 this.variableName = variableName;

 }

RAML TO HTML, THROUGH JAVA PARSER 16

Customizing the Schema Property Class:

This procedure will be similar to customizing the Schema class.

Customizing the Driver Classes:

Check for the relevant variable in the RAML file, and extract them using the String

functions. Refer Appendix 1 for further details on the use of String functions. The changes must

be replicated in either of the classes’ run() methods.

NOTE:

The position of the HTML headers and footers varies in the two driver classes. Please

ensure their position remains either within the first infinite for loop (in Driver 2) or outside (in

Driver 1).

RAML TO HTML, THROUGH JAVA PARSER 17

References

Fodor, P. (2014, August). Computer Science I - Procedural and object-oriented programming.

Retrieved from CSE 114:

http://www3.cs.stonybrook.edu/~pfodor/courses/summer/cse114.html

Galiegue, F. Z. (2014, July 15). RAML™ Version 0.8: RESTful API Modeling . Retrieved from

RAML 0.8: http://raml.org/spec.html

JetBrains. (2015, June 19). IntelliJ IDEA :: Downloads:: System Requirements. Retrieved from

Download IntelliJ IDEA 14.1: https://www.jetbrains.com/idea/download/

Kudtyashov, V. (2015, July 9). JetBrains/IntelliJ-community. Retrieved from GitHub:

https://github.com/JetBrains/intellij-community

Last Name, F. M. (Year). Article Title. Journal Title, Pages From - To.

Last Name, F. M. (Year). Book Title. City Name: Publisher Name.

Merriam-Webster. (1989). Merriam-Webster's Collegiate Dictionary. Encyclopedia Britanica

Company.

w3 Schools. (n.d.). HTML Tutorial. Retrieved from w3schools.com: w3schools.com

World Wide Web Consortium. (1997, December 18). Conformance: requirements and

recommendations1. Retrieved from HTML user agent: http://www.w3.org/TR/REC-

html40-971218/conform.html#deprecated

RAML TO HTML, THROUGH JAVA PARSER 18

Appendix 1

String Functions in Java: (Fodor, 2014)

Package: java.lang.String

Function Description

+toLowerCase(): String Returns a new string with all characters

converted to lowercase.

+toUpperCase(): String Returns a new string with all characters

converted to uppercase.

+trim(): String Returns a new string with blank characters

trimmed on both sides.

+replace(oldChar: char, newChar:
 char): String

Returns a new string that replaces all

matching character in this string with the new

character

+replaceFirst(oldString: String,
 newString: String): String

Returns a new string that replaces the first

matching substring in this string with the new

substring.

+replaceAll(oldString: String,
 newString: String): String

Returns a new string that replace all matching

substrings in this string with the new

substring

+split(delimiter: String):
 String[]

Returns an array of strings consisting of the

substrings split by the delimiter.

Examples:

"Welcome".toLowerCase() returns a new string, "welcome".

"Welcome".toUpperCase() returns a new string, "WELCOME".

" Welcome ".trim() returns a new string, "Welcome".

"Welcome".replace('e', 'A') returns a new string, "WAlcomA".

"Welcome".replaceFirst("e", "AB") returns a new string, "WABlcome".

"Welcome".replaceAll("e", "AB") returns a new string, "WABlcomAB".

"Welcome".replaceAll("el", "AB") returns a new string, "WABcome".

String[] tokens = "Java#HTML#Perl".split("#");

The array will comprise [“Java”, “HTML”, “Perl”]

RAML TO HTML, THROUGH JAVA PARSER 19

ArrayList Objects:

Package java.util.ArrayList;

Function Description

+ArrayList() Creates an empty list.

+add(o: Object): void Appends a new element o at the end of this

list.

+add(index: int, o: Object): void Adds a new element o at the specified index

in this list.

+clear(): void Removes all the elements from this list.

+contains(o: Object): boolean Returns true if this list contains the element o.

+get(index: int): Object Returns the element from this list at the

specified index.

+indexOf(o: Object): int Returns the index of the first matching

element in this list

+isEmpty(): boolean Returns true if this list contains no elements.

+lastIndexOf(o: Object): int Returns the index of the last matching

element in this list.

+remove(o: Object): int Removes the element o from this list.

+size(): int Returns the number of elements in this list.

+remove(index: int): Object Removes the element at the specified index.

+set(index: int, o:Object):
 Object

Sets the element at the specified index.

Refer http://www3.cs.stonybrook.edu/~pfodor/courses/cse114.html

RAML TO HTML, THROUGH JAVA PARSER 20

Appendix 2

HTML Scripting tools (w3 Schools, n.d.)

Introduction:

The DOCTYPE declaration defines the document type to be HTML. The text between

<html> and </html> describes an HTML document. The text between <head> and

</head> provides information about the document. The text between <title> and

</title> provides a title for the document. The text between <body> and </body>

describes the visible page content. The text between <h1> and </h1> describes a

heading. The text between <p> and </p> describes a paragraph. Using this description, a

web browser can display a document with a heading and a paragraph.

HTML Tags:

HTML tags are keywords (tag names) surrounded by angle brackets:

<tagname>content</tagname>

HTML tags normally come in pairs like <p> and </p>.

The first tag in a pair is the start tag, the second tag is the end tag.

The end tag is written like the start tag, but with a slash before the tag name.

Styling HTML with CSS

CSS stands for Cascading Style Sheets. Styling can be added to HTML elements in 3

ways:

 Inline - using a style attribute in HTML elements.

 Internal - using a <style> element in the HTML <head> section.

 External - using one or more external CSS files.

RAML TO HTML, THROUGH JAVA PARSER 21

Tables in HTML:

Tables are defined with the <table> tag. Tables are divided into table rows with the <tr>

tag. Table rows are divided into table data with the <td> tag. A table row can also be

divided into table headings with the <th> tag.

Refer http://www.w3schools.com/html/

